Skip to main content

Neuromuscular Junction

High Yield Facts ⭆ Synaptic transmission at the neuromuscular junction begins when an action potential reaches the presynaptic terminal of a motor neuron, which activates voltage dependent calcium channels to allow calcium ions to enter the neuron. Calcium ions bind to synaptic vesicles, triggering vesicle fusion with the cell membrane and subsequent neurotransmitter release from the motor neuron into the synaptic cleft. Motor neurons release acetylcholine (ACh) neurotransmitter, which diffuses across the synaptic cleft and binds to nicotinic acetylcholine ionotropic receptors (nAChRs) on the cell membrane of the muscle fiber. The binding of ACh to the receptor can depolarize the muscle fiber, results in muscle contraction.

Normally, Acetylcholine (ACh) binds to α-subunit of Acetylcholine Receptor (AChR) at postsynaptic junction. Which ion is responsible for transmission of impulse from postsynaptic junction to nerve fibers?

  1. Chloride (Cl)
  2. Calcium (Ca)
  3. Sodium (Na)
  4. Magnesium (Mg)

Neuromuscular Junction

Presynaptic Fibre (Acetylcholine) ⇒ Synaptic Cleft ⇒ Postsynaptic Fibre (Acetylcholine Receptors)
Neuromuscular junction is a site of transmission of electric impulse between a neuron and a muscle cell. Synaptic transmission at the neuromuscular junction begins when an action potential reaches the presynaptic terminal of a motor neuron, which activates voltage dependent calcium channels to allow calcium ions to enter the neuron. The arrival of a nerve impulse at the presynaptic terminals causes the movement toward the presynaptic membrane of membrane-bound sacs, or synaptic vesicles, which fuse with the membrane and release a chemical substance called a neurotransmitter. This substance transmits the nerve impulse to the postsynaptic fibre by diffusing across the synaptic cleft and binding to receptor molecules on the postsynaptic membrane. The chemical binding action alters the shape of the receptors, initiating a series of reactions that open channel-shaped protein molecules. Electrically charged ions then flow through the channels into or out of the neuron. This sudden shift of electric charge across the postsynaptic membrane changes the electric polarization of the membrane, producing the postsynaptic potential (PSP).
Calcium ions bind to synaptic vesicles, triggering vesicle fusion with the cell membrane and subsequent neurotransmitter release from the motor neuron into the synaptic cleft. Motor neurons release acetylcholine (ACh) neurotransmitter, which diffuses across the synaptic cleft and binds to nicotinic acetylcholine ionotropic receptors (nAChRs) on the cell membrane of the muscle fiber. The binding of ACh to the receptor can depolarize the muscle fiber, results in muscle contraction.

Reference:

Finsterer, Josef, Lea Papic, and Michaela Auer-Grumbach. "Motor neuron, nerve, and neuromuscular junction disease." Current opinion in neurology 24.5 (2011): 469-474.

[Answer is C. Sodium]

Comments

Popular posts from this blog

Neurology: Self-Assessment

✍️ Neurology: Self-Assessment || Stroke || Part 02 || Dear Neurology Aspirants! Please! Watch the video for Self-Assessment. The assessment video contains 30 questions from the Chapter: Stroke. The video used objective questions from “The Neurology: Self-Assessment & Review" by Dr. Sunil Kumar. Hope! This will help you to manage your time in the examination hall. Best of Luck!

Kennedy Disease

Multiple Choice Questions in Neurology: True and False statements about Kennedy Syndrome: CAG repeat Gynecomastia Testicular atrophy Peripheral neuropathy Ocular muscle involvement Kennedy's Disease Inheritance X-linked recessive disorder Trinucleotide repeat: CAG gene Clinical Features Slowly progressive limb-girdle type muscle weakness Slowly progressive bulbar dysfunction Early tremor Muscle cramps Fasciculations Marked abnormal sensory nerve conduction study Degeneration of both motor and sensory neurons Lower motor neurons signs Elevated serum creatine kinase Abnormal sex hormone levels Gynecomastia Testicular atrophy Diabetes mellitus Note: Extraocular muscles are spared. References: Fischbeck, K. H. "Kennedy disease." Journal of inherited metabolic disease 20.2 (1997): 152-158. Sperfeld, Anne D., et al. "X-linked bulbospinal neuronopathy: Kennedy disease." Archives of Neurology 59.12 (2002): 1921-1926. [Answers are A. CAG repeat-True, B. Gynecomastia-True

Cerebellar Historical Facts

✍️ Introduction: When you try to kiss someone, do you know which brain part decides the speed, distance and force of lip movement during a kiss? The best kiss is nothing but a fine coordinated movement of orbicularis oris muscle. Now you are thinking, who controls the coordinated movement of the lip? It is cerebellum! ✍️ Question: Who said - “rate, range, and force of movement is governed by the cerebellum. Sir Joseph Babinski Gillman & Gillman Gordon Holmes Sir Charcot ✍️ Explanation: The cerebellum monitors the rate, range, and force of the movement. The cerebellar diseases do not cause motor weakness but it produces unilateral in-coordination. According to Gordon Holmes, cerebellum controls the “rate, range, and force” of movement. ✍️ Answer(s): 3. Gordon Holmes ✍️ Reference: Holmes, Gordon. “The Croonian Lectures on the Clinical Symptoms of Cerebellar Disease and Their Interpretation. Lecture II. 1922.” Cerebellum (London, England), vol. 6, no. 2, 2007, pp. 148–53; discussion